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STRATEGIES FOR ESTIMATING THE MARINE GEOID
FROM ALTIMETER DATA

P. Argentiero
W. D. Kahn

R. Garza-Robles

ABSTRACT

In processing altimeter data from a spacecraft borne altim-
eter to estimate the fine structure of the marine geoid, a
problem is encountered. In order to describe the geoid fine
structure, a large number of parameters must be employed
and it is not possible to simultaneously estimate all of them.
In practice, one is forced to hold a large number of param-
eters at a priori values and adjust others. Unless the
parameterization exhibits good orthogonality in the data,
serious aliasing results. From simulation studies it has
been found that amongst several competing parameterizations,
the mean free air gravity anomaly model (i.e., Stokes'
formula) exhibited promising geoid recovery characterisitics.

Using covariance analysis techniques, this paper provides
quantitative measures of the orthogonality properties asso-
ciated with the above mentioned parameterization. For in-
stance, it has been determined that a 50 x 5' area mean free
air gravity anomaly can be estimated with an uncertainty of
1 mgal (40 cm undulation) provided that all free air gravity
anomalies within a spherical radius of 10 arc degrees are
simultaneously estimated.
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STRATEGIES FOR ESTIMATING FROM ALTIMETER DATA
THE MARINE GEOID

INTRODUCTION

The primary function of the spacecraft borne altimeter is to determine the fine
structure of the mean sea surface topography. The instrument is well suited
for the task. Consider, for instance, the altimeter which will be on board the
GEOS-C spacecraft which is scheduled for launch in late 1974. In its global mode
the instrument will be capable of producing a measurement every four kilometers
along the subearth path of the satellite. This implies that even assuming con-
siderable data compression it will be mathematically possible to extract from
such data topographic detail of one degree or less.

But there are practical difficulties to be overcome if the full potential of altim-
etry as a data type can be realized. To see what these difficulties are it is nec-
essary to closely analyze what happens when standard estimation techniques
are employed to obtain sea surface topography from altimetry data. Essentially
the problem is to reconstruct an analytic surface from direct but noisy observa-
tions of the surface taken at specified points. The obvious approach is to param-
eterize the surface in terms of coefficients which define a suitably dense set of
functions in the space of two dimensional analytic functions and to recover the
coefficients from the data by means of a standard minimum variance filter. Of-
ten the physical setting of the problem suggests the proper parameterization.
If not, then an arbitrary family of analytic functions such as the set of two di-
mensional polynomials can be used. For this problem a natural parameterization
is suggested by the fact that after suitable corrections the mean sea surface can
be considered as cohering closely to an equipotential surface known as the marine
geoid. (1) Thus one candidate for a natural parameterization is the set of stan-
dard spherical harmonic coefficients of the Earth's geopotential field.

It is certain that any parameterization capable of describing the fine structure
of the surface in question must employ an enormous number of coefficients.
For instance, if we are interested in three degree features of the marine geoid
and if the standard spherical harmonic expansion of the geopotential field is
used as a parameterization, a full set of coefficients up to degree and order 60
would be required. This implies the estimation of over 3700 parameters! Un-
less very special circumstances apply it is not possible to simultaneously esti-
mate such large parameter sets. In practice, in order to use parameter esti-
mation techniques in recovering the marine geoid fine structure from altimeter
data it will be necessary to adjust small subsets of the parameters while in effect
"freezing" the rest at a priori values. But unless the parameterization exhibits
a certain property with regard to altimetry data which we term "orthogonality in
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the data set", the net effect will be that the uncertainties in the adjusted terms

will badly corrupt the estimates of the adjusted terms. This effect is frequently

called aliasing. The orthogonality property just mentioned will be rigorously

defined in a later section but in essence it is a property of a parameterization

which permits a decomposition of the estimation problem into estimation prob-

lems of much smaller dimensionality and without fear of serious aliasing.

To take full advantage of the attractive properties of altimetry it will be necessary

to develop a parameterization of the marine geoid which exhibits good ortho-

gonality properties in altimeter data. The orthogonality properties of the set of

spherical harmonic coefficients of the geopotential field is very poor and it is

not a good candidate for the proper parameterization. Other candidates for the

parameterization of the marine geoid are surface density layers (2) and sample

functions (3). The parameterization whose properties will be investigated in this

paper is the one provided by mean free air gravity anomalies and Stokes' formula

(4), (5). If this parameterization is to be used to determine the marine geoid
from altimeter data it will be important to discover to what extent mean free

air gravity anomalies are orthogonal in the data. Specifically, we would like to

know how far two mean free air gravity anomalies must be separated before one

can be sure that a neglecting of one anomaly does not badly alias the estimate of

the other. Without knowledge of this distance it is impossible to make intelligent

use of the parameterization.

The results of the SKYLAB altimeter experiment have demonstrated the ability

of altimetry to reveal Inrine geoid fine structure. But it will be during the

GEOS-C mission that for the first time scientists will have an opportunity to

examine the output of a spacecraft borne altimeter functioning in a global mode

over the world's oceans. In the succeeding section the performance of the

SKYLAB altimeter and the goals of the GEOS-C experiment will be discussed.

Next, the mathematical details of the measurement modeling and preprocessing
of altimeter data will be described and the Stokes' formula mean free air gravity

anomaly parameterization of the marine geoid will be documented. Following

that will be a detailed discussion of the dual concepts of orthogonality and aliasing

and their relationships to the problem of estimating a marine geoid from altim-

eter data. Finally, the results of a systematic application of covariance analysis

will be used to develop optimal estimation strategies for determining the marine

geoid from altimetry data.
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THE SKYLAB AND GEOS-C ALTIMETER EXPERIMENTS

The GEOS-C spacecraft will be inserted into orbit during the latter part of cal-
endar year 1974. This spacecraft will have as its prime experiment, a radar
altimeter. The objectives of the GEOS-C altimeter experiment are: (a) to de-
termine the feasibility and utility of a spaceborne altimeter to map the topography
of the ocean surface with an absolute height accuracy of :5 meters, and with a
relative height accuracy of 1 to 2 meters, (b) to determine the feasibility of
measuring the deflections of the vertical at sea, (c) determine the feasibility
of measuring wave height, and (d) contribute to technology leading to a future
operational satellite altimeter system with a 10 cm measurement capability.

The altimeter data, when calibrated and corrected e. g., for sea state, ocean
tides, and other effects, constitute measures of the distance between the GEOS-C
spacecraft and the ocean surface. Knowledge of the satellite altitude relative to
a reference ellipsoid and knowledge of the oceanographic departures of the sea
surface topography from the geoid will then permit the determination of the
geoid. The chief problem is expected to be the determination of orbital altitude
for GEOS-C. The primary tracking systems for doing this are the satellite to
satellite tracking system and precision lasers. Data from these systems and
others tracking GEOS-C, including C-band radars, USB range and range rate
stations, and TRANET Doppler stations, will be used to find satellite height.

Satellite contributions to the determination of the current ocean geoid have spa-
tial resolutions corresponding to half wavelengths of approximately 180 (i. e.,
2000 km). Surface gravity achieves representations with finer resolution, in
the 10 to 50 range (i.e., 110 km to 550km), however it covers only about 50%
of the ocean surface. The GEOS-C altimeter system will thus fill in the gaps
and provide valuable independent knowledge where data now exist.

The ability of a radar altimeter to detect features of the ocean surface has re-
cently been demonstrated by the SKYLAB altimeter. In Figure 1 an altimeter
pass over the Puerto Rican Trench has been analyzed. The pass was over the
southwest corner of Puerto Rico and was 72. 8 seconds in duration. From a
plot of the height residuals (formed by comparing the altimeter measurements
with the calculated height of SKYLAB's orbit) it can be seen that a 17 meter
drop in height residuals occurs when SKYLAB passed over the deepest part of
the ocean (i. e,, corresponding to a 4000 meter depth of the ocean bottom) and
the peaking of the height residuals occurred when SKYLAB traversed the Puerto
Rican land mass. The SKYLAB data described here exemplifies the high level
of resolution of surface features by a radar altimeter.

It is to be pointed out however, that data from the GEOS-C experiment
will be significantly free of the effects of spacecraft dynamic motions

3
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which is not the case for SKYLAB altimeter data, since in the latter there were
attitude control jet thrusting, crew motion, etc. In addition, because GEOS-C
will have a nominal 1 year operating lifetime the altimetry data obtained will be
far in excess of that obtained from SKYLAB. Thus for reasons cited above, the
GEOS-C altimeter experiment data is most suitable for improving the marine
geoid.

To successfully utilize GEOS-C altimetry data for improving the accuracy of the
marine geoid, dictated the development of unique computer programs capable of
processing these data. The descriptions of the mathematical models associated
with these programs and the computation strategies for processing altimeter
data are provided in succeeding sections.
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DESCRIPTION OF THE ALTIMETER MEASUREMENT

The geometry associated with the altimeter measurement is described in Figure

2. As can be seen, the altimeter measurement is nominally the shortest distance

between the satellite and the sea surface, that is, the measurement is along the
normal to the sea surface that passes through the satellite. The mathematical

model for the altimeter measurement is given by the following relationship:

ha = h - N'- hs - Ah' (1)

where

hh -=p - rse

P = position vector of S/C

rse - geocentric radius vector

N' - geoid height above reference ellipsoid

'h s - deviation of sea surface from geoid

Ah - systematic errors in altimeter measurement (e.g., refraction,
timing, etc.)

A more detailed description of the mathematical modelling of the altimeter meas-
urement is given in Reference 6 (pp. 4-3 to 4-13).

The error sources that effect the altimeter measurement fall into three cate-
gories: those that are due to orbit uncertainty, those that cause the measured
geoid to deviate from the true geoid, and those that effect the measurement ac-
curacy itself. Equation 2 below describes the functional dependence of the
error sources on the altimeter measurement:

ha = h(Eot) - N'(Go) - 5hs(o 0 ,s0 ,0,X,t) - Ah'(M 0 ,0,X,t) (2)

where

h: S/C altitude above reference ellipsoid

E: orbit parameters and orbit dependent terms (radiation pressure,
drag, etc.)

t: time of altimeter measurement

i0: vector of geopotential coefficients

6
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N': geoid undulation function

ro0: vector of tidal error model coefficients

so : vector of local sea surface biases (i. e., currents, storm surges,
wind waves...)

mo : vector of altimeter measurement error coefficients

or in general

la = ha(Eo,G0,r0,so,mo,AO,X,t) (3)

The altimeter measurement will be, corrected for known error sources, smoothed,
sorted, etc. by the data preprocessor. Then, each measurement will be com-
pared with altitude calculated from the satellite's orbit (h'a ) to form the meas-
urements residual Aha:

Aha = ha - h'a (4)

Mathematically, this residual is equivalent to the difference function,

Aha ha AE ha  G + ha  k
Ei  aGj a k (5)

aha  . ah a+-- As +'- Amr+e
3s a 8mr

or

Aha = Aha(E) + Aha(G) + Aha(r) + Aha(s) + Aha(m) (5a)

The models for the altimeter measurement errors are now to be specified.

1. Error Due to Orbital Parameters Aha(E)

Precision laser tracking data, Satellite to Satellite Tracking (SST), USB, C-Band
and Doppler data preceding and during altimeter measurement data acquisition
will be used to correct the error on altimeter measurements due to orbital pa-
rameters using an existing orbit determination program. Orbit height accuracy
required for altimetry data reduction must be better than 1 meter. Recent
studies indicate that this is feasible (Ref. 7).

8



2. Error Due to Tides and Sea Surface Ah a (r) and Aha(s)

Corrections for deviations from the geoid due to ocean tides are based on the
model of Hendershott (Ref. 8). In this model the dominant lunar semi-diurnal
tide (M2 ) with lunar declination terms neglected is represented. This tidal
model is representative of the current state of the art. The maximum error
contribution due tides is approximately 1 meter. The contributions due to local
sea surface biases is on the order of 50 cm, below the resolution threshold of
the GEOS-C altimeter. Therefore sea surface bias corrections are neglected.

3. Errors Due to Altimeter Hardware Aha (m)

Altimeter measurement errors which directly affect the accuracy for determining
the geoid radius are:

Alha(m) = Ah o + Ah + AhL + AhD + AhT +AhR (6)

where

Aho: altimeter antenna offset

Ah2 : antenna offset due to S/C libration

Ah L : dynamic lag

AhD: altimeter drift

Ah : timing bias

AhR : tropospheric refraction

Models for the above error sources are now described.

A. Altimeter Antenna Offset

Aho = ha tan V2(u 0 - 5b) tan(c 0o - 6b)

+ (cr) 3  - .225] 
(6a)

5b ah 228b)

for

b < a 0 < 20

9



or

[h(c )3 ( b)

Aho F - .225 (6b)
L bha 5b)

for

0 < ao < 6b

where

ha: spacecraft altitude

5b: antenna half beamwidth angle

oo: angle off botesight

r: transmitted pulse length

c: velocity of light (299.7925 x 10 3 kin/sec)

B. Antenna Offset Due to S/C Libtation

Ahv = ha tan /2(oa - 6b) tan(a - Sb)

+ L(T26[ - 225 (6c)
+45bha]L 2 b

for

6b < av < 20

or

F (cr)3 ' a Q 2 225 (6)

h- -. 225 (6d)
46bhaj L /26b)

for

0 < aR < 5b

10



where

S= A2 sin (T +)

Oa: S/C libration angle

Ak: peak libration angle

0k: libration phase angle

T: orbital period.

C. Dynamic Lag

A measurement bias error induced by the change in S/C position at the time of
the outgoing and return pulses.

0 0

hi+l hi
AhL = 1 -h £ (6e)

(ti+ 1 - ti)

where

hi: altitude rate at time t i (sec)

£: lag coefficient (sec 2 )

D. Altimeter Drift

A measurement bias error due to component aging.

AhD = D(t- to ) (6f)

where

to: initial time of altimeter measurement

t: current time of altimeter measurement

D: drift coefficient (sec)

E. Timing Bias

Bias error introduced by S/C clock error.

11



AhT = hr (6g)

h: height rate at time of altimeter measurement

7: clock error coefficient

F. Tropospheric Refraction Error

Bias error introduced into altimeter measurement due to tropospheric refraction.

The Model used is that developed by J. Saastamoinen (Ref. 9).

4. Error Due to Geopotential Aha(G)

In the preprocessing of altimeter data the altimeter measurement will have been

corrected for the orbit uncertainties ocean tides, local sea surface biases and

measurement bias errors using the error models described above. Thus Equa-

tion 4 above is restated as follows:

Aha(G) = ha - [ha + Aha(E) + Aha(r) + Aha(s) + Aha(m)] (7)

And the relationship between altimeter measurement residuals to geoidal param-

eters can then be stated as follows:

8ha
Aha(G) ' AG . (8)

aG j

As stated above, the altimeter measurement residual as described in (7) solely
reflects primarily (neglecting second order effects) the departure of the geoid
from the reference ellipsoid. Or more precisely the distance along the UNIT
normal to the reference ellipsoid between the reference ellipsoid and the geoid
which is called geoidal height or geoidal undulation N' (see Figure 2).

The mathematical relationship which relates the geoidal undulation to the dis-
turbing potential T is given by Bruns' formula derived in Reference 4. That is

T
N =- (9)

where

T disturbing potential

,y magnitude of gravity vector normal to reference ellipsoid

12



The disturbing potential of the global geoid at point (0, X, r) is expressed in terms
of spherical harmonics as follows:

L n

T = Pnm(sin 0) [Cnm cos mX + Snm sin mX] (10)

n=2 m= 0

where

GM: gravitational constant of the earth

Cnm, Snm: spherical harmonic expansion coefficients

Pnm(sin 0): associated legendre functions

(x,): latitude and longitude on geoid at which disturbing potential is
evaluated

r: geocentric radius from earth center of mass to evaluation
point of disturbing potential on geoid

a: semi-major axis of reference ellipsoid

L: is the limit of summation, and it is specified by the degree of
harmonic expansion of the global geoid

n: summation index for degree terms of the spherical harmonic
expansion of T

m: summation index for the order of terms in spherical harmonic
expansion of T

Thus the geoidal undulation at any point P (, X, r) on the earth can be computed

from geopotential coefficients derived from satellites by analysis of perturbations
on the orbits induced by the earth's gravity field. The undulations are computed
from the combination of Equations 9 and 10.

Another form of expressing the disturbing potential is in terms of Stokes' formula
(Ref. 4 pp. 92-98). This formula makes it possible to express the disturbing
potential of the global geoid from gravity data. That is

T =R Ag S() da (11)

13



where

R = a(l - f)'/3

a: radius of. reference ellipsoid

f: flattening of reference ellipsoid

S( ) - Stokes' function

a: element of area

Ag: surface gravity anomalies

S( ) Ecsc( --6sin + - 6 cos- 3 cos In (sin + sin2) (la)

from Bruns' formula (Eq. 9).

The geoidal undulation at any point P on the global geoid can be computed from
Stokes' formula (Eq. 11). That is

T RC
N - - AgS( ) do (lib)

In terms of geographical coordinates Stokes' function can be expressed as
follows:

N(R,X) /2 Ag(4',X') S(VI) cos O'dO'd' (1 Ic)
47 r '= 0 f4'-/2

where

do = cos O'do'dX'

(4,X) - latitude and longitude of the computation point

('X') - coordinates of the variable surface element a

spherical distance between the computation point and variable
surface element

0 = cos - ' [sin ¢ sin o' + cos ¢ cos o' cos (X - X')]

14



Ag(¢O''): free air gravity anomaly at the variable point ('X')

Ag(4'X'): maiaElitWtny,;GrI 4e AtYlariabl e point ('')

S mean value of gravity over earth
In order to combine surface gravity data and geopotential information derived
rom r t fde ig ti t natthetbmrthglbiib v hat imrleadided

lmo two area._ g i.ittoi$ge l~i~oa Nolits Ilflahte h )€ r~hatrom iraVl u - ..... ....it.....

in pfnt ar2as k

hrpreoS l a a gs giq 2cl WYg;gIdfeeol, a is also partitioned into two parts

represented by 6 and Ag 2 respectively where

Ag s = 7 (n- I) n nm(sin 0)(Cnm cos nX + Snm sin mX (I Id)

Ag s = y0 (n- 1) P n(sin ) )(Cn cos nX +Snm sin mnX}j (1 d)

The g2 value R defid Bs the remainder of the gravity anomaly. By parti-
t~in he e , neff dagg e eacrrlaiq c7ItalitS.

Qungahiel eaWi h9R orV1racyP 1 @Nl1 undulations into two components.

Equation 11c can thus be rewritten as follows:
N(¢,X) = N + N2  (Ile)

where N(,X) = NI + N (1le'

where
27 frr/2

N1  --- 2ifr//Mgs(O,') S() cos O'd'd'

N =4-g -/2 Ags(2',')S~) cos 'd'd'4r7y f O -1,-/2

or

or
T

7YT

and

and

N2 - , fAg, (,X) S(W) cos ,'dX'd''

2 4f~7 S~e J

AT
N2 = 

= N

Ag 2 = (Ags
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Thus

T + AT

NN2 = AN)1 4y Ag( j)S( j) cos 0j

j= 1

where AN 1 is the correction to the geoidal undulations of the global geoid as a
function.of the corrections of mean free air gravity anomalies.

Equation 11f is the form of the-parameterization adapted for ,relating the altim-
eter measurement residuals to geoidal parameters. That is, Equation 8 can
now be written as fOllows:

6N= Aha = AN 1

r = AG. = 6(AgsjXj)} (12)

Aha R AO'AX'
A -S(Oj) cos-0j

aGj 4iy

or in the matrix form

SN(k X 1) = A(k X j) 6g(j X 1) (12a)

16



ORTHOGONALITY AND ALIASING

Assuming that altimeter observations can be directly translated into deviations

of the marine geoid from a reference geoid, it is straightforward to estimate

gravity anomalies from altimetry data. Let 5 N be a vector of geoid undulations

collected from a certain region over the ocean. Next let 6 be a vector of mean

free air gravity anomalies defined over a region of the ocean which contains the

data region. Then repeating Equation 12 we have

6N =A 6 (13)

where A is a matrix the number of whose rows is equal to the number of data

points and the number of whose columns is equal to the number of gravity anom-

alies. As demonstrated in Eq. 12 the individual elements of A, say A (I, J), can
be computed through Stokes' formula and the latitude and longitude of the ith data

point together with the longitude and latitude of the midpoint of the grid over

which the jth gravity anomaly is defined. Equation 13 provides a linear equation
of condition and in a standard minimum variance fashion 6g could be estimated

from observations of 6N. But in order for Equation 13 to be correct (correct,
that is, assuming that the approximations inherent in the discrete form of Stokes'

formula are valid) the gravity anomalies in the array S6 must cover the globe.

Considerably smaller regions would no doubt be adequate but just how small
these regions can be before a serious bias is introduced into the estimation

process is a matter to be determined from computations. In any case, compu-
tational consideration constrain us to chose a region such that the number of

elements in the 6 array does not exceed two or three hundred. Gravity anom-

alies outside of this region are in effect assumed to be zero. To see precisely
what happens when this assumption is made, postulate that the 6 g array of

Equation 13 is defined over an area sufficiently large that Equation 13 is sub-

stantially correct. Then write

1 g(14)

where
5j, = gravity anomalies to be adjusted in a standard minimum variance

filter

and

5g2 = gravity anomalies assumed to be zero and thus left unadjusted by the
minimum variance filter.

17



Then Equation 13 can be written

6N = A1 6g +A 2 g 2  (15)

where A 1 and A 2 are respectively the variational matricies of 6N with respect

to 8gl and with respect to 6g2.

After proper corrections altimeter data is treated as direct observations 5N of

6N with statistics

6N = 6N + v, E(v) = 0, E(vvT) = Q (16)

Estimates of mean free air gravity anomalies obtained from satellite tracking

and gravimetry measurements are available. 10 Unless this information were

correctly factored into the gravity anomaly estimates obtained from altimeter

data, the resultant estimates would not be optimal. Consequently we assume

the existence of an a priori estimate 6g' of fl with properties

5g' = 6gl +l, E(oc ) = O,E(U, T) = P1  (17)

The gravity anomalies 6'2 for computational reasons are assumed to be zero

but the actual values of gravity anomalies in the region on the sphere which is

ignored have a certain distribution about zero. We assume

E (62) = , E (6 2  T) = 2 (18)

When the values of 56g2 are assumed to be zero the minimum variance estimate

of 61 becomes

5g' = (AT Q-1 A + P 1 )-' [AT Q- 1 6N + P 1 6g'] (19)

See Reference 11 for details. Define the covariance matrix of the estimator

given by equation 19 as

P = E [(6- -6g ) (61 - 6 g )T] (20)

From Equations 15, 16, 17 and 19 we obtain

g 1 -5 = (AT Q-1 A1 + P' )- (-AT Q-1 A2 6g 2 + A Q-1 v + p1 a) (21)

Equation 21 yields

P = (ATQ- 1 A1 + )- +(ATQ- 1 A 1 P') - 1 ATQ-1A 2P 2 ATQ- 1 A
(22)

(AT Q-LA + Pl) - 1
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Assume that the data is uncorrelated and that each data point has the same
variance. Then

Q = a102  (23)

Where I is the identity matrix and a2 is the common variance of the data. Also
assume that the values of the unadjusted gravity anomalies are independently
distributed. Then the covariance matrix P 2 of 6 2 can be written as

2
01

P2 0 (24)

02an2

Where n 2 is the number of unadjusted gravity anomalies and a2 is the second
moment about zero of the ith unadjusted gravity anomaly.

Also define a matrix K as

K - (ATQ-1 A1 +P' )-1 ATQ-1A 2  (25)

If n1 is the number of adjusted parameters, then K is of dimension n1 by n 2.
With these assumptions Equation 22 yields the following expression for the
variance of the i th adjusted gravity anomaly

n2

P(I,I) = (pi,j oj)2 (26)

j=0

Where 3? is the ith diagonal element of the matrix (ATA )-1 (we assume here
that diagonal elements of the matrix P 1l are relatively small) and

ij = K(,J), J> 1 (27)

Define the error sensitivity matrix as

s (3ij}, i =  1,2,... n , J = 0,1,2,....n 2  (28)

and finally define the Alias Matrix as

L = sa (29)
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where

0o
a1  0

U2

0 (30)

On
2

The alias matrix reveals much of the probability structure of the estimation
procedure. From Equations 26, 28, 29 and 30 it can be seen that the standard
deviation of the ith adjusted gravity anomaly is the root sum square of the terms
in the ith row of the alias matrix. The elements in the, first column -of the alias
matrix represent the. R. S. S. contribution to the standard deviation of each esti-
mated parameter due to the data noise. The elements in the jth column, J > 2,
represent the R. S. S. contribution to the standard deviation of each estimated
parameter due to the J - Ist unadjusted parameter. These terms are called
the aliasing contributions to the uncertainty in the adjusted parameters due to
the uncertainty in the J - 1st unadjusted parameter. Notice that the aliasing
contributions due to the J th unadjusted parameter are proportional to the stan-
dard deviation of the Jth parameter. Definition: In a given estimation process the
ith estimated parameter is said to be orthogonal with respect to the jth unesti-
mated parameter if the aliasing contribution to the ith estimated parameter due
to the uncertainty of the jth unestimated parameter is zero.

Two things can be noticed concerning this definition. First, the orthogonality
relationship between two parameters must be defined within the context of a
given estimation process. The data set must be defined and it must be stipulated
which parameters are in the adjusted and in the unadjusted mode. Second, al-
though we have been discussing mean free air gravity anomalies and altimeterdata our mathematical results and definitions are applicable to any linear esti-
mation problem where some parameters are adjusted and others left unadjusted.

To see the implications of the orthogonality relationship we need a more re-
vealing representation of the aliasing terms. First notice that the first term
on the right side of Equation 22 is the covariance matrix of the estimation
process under the assumption that the unadjusted parameters are perfectly
known. This covariance matrix gives the uncertainty of the estimates due only
to data noise. Define the so-called "noise only" covariance matrix as

p (ATQ-1A 1 +P- 1)-1 (31)
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Next observe that the elements in the ith row and jth column of respectively
A1 and A2 are the partial derivative of the ith data point with respect to the
jth adjusted parameter and the partial derivative of the ith data point with re-
spect to the j th unadjusted parameter. The aliasing contribution to the ith ad-
justed parameter due to the Jth unadjusted parameter can be written as

n1  m

L(l,J + 1) = P(I,K)
K= 1 L= 1

(32)
abN(L) a6N(L)

Q (L,L)
6ga (K) 5g2 (J)

where m is the number of data points.

If the estimates of the adjusted parameters are relatively uncorrelated in the
noise only covariance matrix, Equation 32 can be approximated by

z a6N(L) _6N(L)

L(I,J + 1) = P(I,I) L 5() Q-(L,L) 5, 2 (j) (33)E g (I) 6g 2L= 1

A sufficient condition for the left side of Equation 21 to approximate zero is for
the observability patterns of 6j, (I) and 5Z 2 (J) in the data to be virtually non-
overlapping. Up until about 400, Stokes' function rapidly attenuates with in-
creasing values of spherical radius. 4 Hence if the grids on which Sj, (I) and
5g 2 (J) are defined are sufficiently separated, the orthogonality relationship

would be effectively satisfied and the estimate of ig1 (I) would experience no
aliasing from the uncertainty of 5j2 (J). Conversely if the grid on which 6 (I)
was defined were in close proximity to grids whose gravity anomalies were un-
adjusted, one would expect serious aliasing of the resultant estimate.

It should be clear then, that if the gravity anomalies are estimated in a block
the outer layers of the block contain gravity anomalies whose estimates will be
badly aliased by the adjacent unadjusted parameters. It will be necessary to
discard these estimates. But the gravity anomalies in a sufficiently small inner
core of the block may be adequately separated from the unadjusted parameters
to be effectively orthogonal with respect to them. The estimates of these terms
presumably will be of sufficient accuracy that they can be accepted. In effect,
for every block of gravity anomalies that we intend to estimate it will be neces-
sary to construct a "buffer zone" several layers deep of gravity anomalies which
surround the block. The new and larger block of gravity anomalies must be
simultaneously estimated and then the estimates of gravity anomalies in the
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buffer zone must be rejected due to aliasing. In order to achieve an intelligent

compromise between estimation accuracy and computational load it is necessary

to know the relationship between the depth of the buffer zone and the accuracy of

the estimation procedure. The relationship will vary with grid size, computation

radius and data density. The most convenient way to study the relationship is

to utilize covariance analysis techniqids to generate alias matricies for several

situations and to attempt generalizations from the results. This is accomplished

in the following section.

22



ESTIMATION STRATEGIES FOR GRAVITY ANOMALY DETERMINATION

The accuracy with which a given gravity anomaly is estimated from altimeter

data is a function of many parameters. It is of course dependent on the accuracy

and density of altimeter data. As explained in the previous section it is also

dependent on the radial distance between the estimated gravity anomaly and the

nearest gravity anomaly which is in the unadjusted mode. This parameter we

call the estimation radius. Another parameter, the computation radius, is an

important determinant of the accuracy of a gravity anomaly estimation. The

computation radius sets the maximum distance from a given grid element over

which data is to be processed in order to estimate the gravity anomaly defined

on that grid element. Estimation accuracy does not necessarily increase with

increasing computation radius. To see the reason notice that for a given esti-

mation radius the covariance matrix of a set of estimated gravity anomalies is

given by Equation 22 as the sum of a matrix which is dependent only on data

uncertainty and a matrix which represents the aliasing effects from the unadjusted

parameters. With increasing computation radius the elements of the first matrix

must decrease but in general the elements of the matrix which conveys the ali-

asing effects will increase. This effect can be shown graphically by means of so-

called aliasing maps. To obtain our aliasing maps of Figures 3 and 4, we simu-

late in a covariance mode a situation in which we describe the marine geoid by

means of two degree by two degree gravity anomalies and we assume 12 alitmeter

observations for each grid, each with an uncertainty of 1 meter. In Figure 3

we map the R. S. S. contribution in mgals to the uncertainty in the estimated

gravity anomaly defined on the grid element in the lower left hand corner when

the adjacent anomalies are assumed to be in an unadjusted mode and to have an

a priori uncertainty of 50 mgals. The computation radius is 5'. Notice that

the aliasing contributions decrease with the distance between the unadjusted

parameter and the estimated parameter thus demonstrating the inherent ortho-

gonality property of the gravity anomaly parameterization of the marine geoid.

In Figure 4 the computation radius has been changed to 200 and the aliasing effect

is seen to decrease much less radically.

To achieve an intelligent compromise between computational load and estimation

accuracy it is necessary to determine the precise relationship between the ac-

curacy of the estimate of a given gravity anomaly and the estimation radius and

computation radius employed in the estimation procedure. To do this we assume

that altimeter data existed at a density of three data points per one degree by

one degree grid and that the uncertainty on the data was one meter. It was also

assumed that unadjusted gravity anomalies had a standard error about zero of

50mgal. This figure is conservative, a more realistic figure being 30mga 1 2 .

No a priori estimate was assumed for estimated parameters. The effect of

unadjusted parameters out to a spherical radius of 450 were included in the com-

putations. Under these conditions Figure 5 provides the standard deviation in

23



1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0

2 2 2 2 2 2 2 1 1 1 1 1 0 0 0

3 2 2 2 2 2 2 2 2 1 1 1 1 0 0

3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

4 3 3 3 3 3 3 2 2 1 1 1 1 1 1

5 4 4 4 3 3 3 2 2 2 1 1 1 1 1

5 5 4 4 4 4 3 2 2 2 2 1 1 1 1

6 6 6 5 5 4 3 3 2 2 2 1 1 1 1

8 8 7 6 5 5 3 3 3 2 2 2 1 1 1

10 10 9 8 6 5 4 3 3 2 2 2 1 1 1

18 19 14 9 7 6 4 4 3 3 2 2 1 1 1

31 26 19 10 8 6 5 4 3 3 2 2 2 1 1

31 18 10 8 6 5 4 3 3 2 2 2 1 1

Figure 3. Alias Map for 20 by 20 Grids

and for 50 Computation Radius
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4 4 4 4 4 4 4 3 3 3 3 2 2 2 1

4 4 5 5 5 5 4 4 4 3 3 3 2 2 2

5 6 6 6 6 5 5 5 5 4 4 3 3 2 2

6 7 7 7 7 7 6 6 5 5 4 4 3 3 2

8 8 9 9 8 8 8 7 7 6 5 4 4 3 3

10 10 11 11 11 10 10 9 8 7 6 5 4 4 3

12 14 14 14 14 13 12 11 10 8 7 6 5 4 3

15 16 17 17 16 15 14 13 11 9 7 6 5 4 4

17 19 19 20 19 17 16 14 12 10 8 7 6 5 4

19 22 22 22 21 19 17 16 13 10 9 7 6 5 4

22 24 25 24 22 21 19 16 14 11 9 7 6 5 4

25 28 28 26 24 22 19 17 14 11 9 7 6 5 4

28 32 30 28 25 22 20 17 14 11 9 7 6 5 4

36 34 32 28 24 22 19 16 14 11 9 7 6 5 4

36 2 5 25 22 19 19 15 13 10 8 7 6 5 4

Figure 4. Alias Map in mgals for 20 by 20 Grids

and for 200 Computation Radius
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the estimates of 50 by 50 mean free air gravity anomalies as a function of esti-
mation radius and computation radius. From this figure it is clear that the most
efficient estimation strategy for 50 by 50 anomalies is obtained with an estimation
radius of about 100 and a computation radius of about 50 . This strategy will re-
sult in an accuracy of 1 mgal. This implies that if 50 by 50 mean free air gravity
anomalies are estimated in blocks, estimates of gravity anomalies in the outer
two layers of the block should be discarded due to aliasing. The rest of the
estimated gravity anomalies should be accurate to within one mgal provided a 50
computation radius is used. It is important to remember, however, that our
prime intent is to estimate a marine geoid rather than gravity anomalies. With
estimates of 50 by 50 mean free air gravity anomalies can utilize Stokes' formula
to analytically reconstruct a marine geoid which is sufficiently detailed that 50
features can be noticed. Since the discrete form of Stokes' formula is linear it is
an easy matter to propagate a given error in gravity anomaly estimation into an
error in marine geoid determination. Assuming that Stokes' formula is accurate
if its summation is carried out within a 900 spherical radius of a given point, a
one mgal standard deviation in the estimate of 50 by 50 mean free air gravity
anomalies propagates into a 40 cm standard deviation of the resultant marine
geoid. Thus by applying proper estimation procedures to the reduction of altim-
eter data should be possible to determine 50 features of the marine geoid with a
resolution of 40 cm.

To obtain a more detailed marine geoid represents a more difficult estimation
problem. Figure 6 provides the standard deviation in the estimates of 30 by 30
mean free air gravity anomalies as a function of estimation radius and computa-
tion radius. An estimation radius of 120 and a computation radius between 100
and 110 appears to provide the most intelligent estimation strategy. The strategy
leads to estimates of 30 by 30 mean free air gravity anomalies which have stand-
ard deviations of 5 mgal. This implies that is 30 by 30 mean free air gravity
anomalies are estimated in blocks, the outer 4 layers must be discarded as
being badly aliased. A 5 mgal standard deviation in estimates of 30 by 30 mean
free air gravity anomalies propagates into a standard deviation of 1.2 m in the
resultant marine geoid. With the present assumptions no estimation strategy
is adequate to determine features of the marine geoid as small as 20. With much
greater data densities such fine resolution is possible. For instance if we increase
the data density by a factor of 100 thus postulating 300 data points for each 10 by
10 block, then with an estimation radius of 100 and a computation radius of 20,
20 by 20 anomalies can be estimated with a standard deviation of 2. 3 mgals. This
propagates into a standard deviation of the marine geoid of about 42 cm. But to
postulate such data densities is probably not realistic and in addition it suggests
a very heavy computational load. The accurate resolution of 30 features of the
marine geoid is likely to be the limit of what can be accomplished with altimeter
data and the Stokes' formula mean free air gravity anomaly parameterization of
the marine geoid.

27



60
30

ASSUMPTIONS

* A Priori Estimates of Free Air Gravity Anomalies: ±50 milligals

* Data Density: 3 measurements per 10 x 10 area

* Altimeter Precision: ±1 meter
50 -

40

30
>6

20

10

12, 15, 18, 21o

0 10 20 3o 40 50 60 70 80 9g 100 110 120 130 140 150 160 170 180 190 200 210 220

COMPUTATION RADIUS

Figure 6. Accuracy of 30 by 30 Mean Free Air Gravity Anomaly Estimate vs. Computation Radius

for Various Estimation Radii



Finally notice that these results were accomplished without assuming a priori
estimates of gravity anomalies. In fact such estimates have been derived from
satellite tracking data and direct gravity measurements. When these estimates
are optimally combined with altimeter data by means of Equation 10 the resultant
estimates of gravity anomalies will be predicted on all relevent data. The repre-
sentation of the marine geoid derived from these estimates will then constitute
the best possible estimate of that surface.
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SUMMATION

Data from the SKYLAB altimeter has demonstrated the ability of altimetry to

discerne the fine structure of the marine geoid. It will be during the GEOS-C

mission, however, that global sensing of the sea surface topography from a

spacecraft borne altimeter will be possible for the first time. In order to make

optimal use of the vast amount of altimeter data expected from the GEOS-C one

must apply numerous corrections to the data, both to eliminate systematic errors

inherent in the data type itself and to correct for the effects of deviations of

the mean sea surface from the marine geoid.

In order to employ standard parameter estimation techniques to estimate a

marine geoid from altimeter data it is necessary to utilize a parameterization

of the marine geoid which exhibits good orthogonality characteristics in the data

type. In this respect at least, the Stokes' formula mean free air gravity anomaly

parameterization appears to be the most promising. For a given grid size and

data density, the accuracy of the geoid resulting from an estimate of gravity

anomalies from altimeter data is a strong function of the choice of estimation

radius and computation radius. An application of covariance analysis techniques

reveals that assuming a data density of three measurements per one degree

by one degree spherical surface area with each measurement accurate to within

one meter, optimal choices of estimation radius and computation radius of

respectively 100 and 50 yield an accuracy in the estimate of 50 by 50 mean free

air gravity anomalies of approximately 1 mgal. This result implies that with a

judicious choice of estinlation strategy, one can determine geoid height with a

standard deviation of 40 cm and a spatial resolution of 500 km (5 are degree).

With the same data density and data accuracy assumptions, covariance analysis

demonstrates that optimal choices of 120 for estimation radius and 100 for

computation radius permits one to estimate with an accuracy of approximately

1. 2m in geoid height with a spatial resolution of 300km (3 are degrees). Severe

aliasing difficulties are encountered in attempting to estimate more detailed

geoids. Our covariance analysis studies indicate, however, that a very small

computation radius together with great data densities can mitigate the aliasing

effects and yield in localized areas a marine geoid capable of showing spatial

resolutions at the 100km to 200 km level.

Finally it should be mentioned that by utilizing the Stokes' formula mean free

air gravity anomaly parameterization of the marine geoid, it becomes an easy

matter to combine satellite tracking data and direct measurements of gravity

anomalies with altimeter data to obtain an optimal estimate of the marine geoid.
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